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SUMMARY 

The unsteady viscous flow around flat plates with square leading and trailing edges is investigated by using 
a finite difference computation of the incompressible two-dimensional Navier-Stokes equations. The chord- 
to-thickness ratio of a plate ranges from d/h  = 3 to 9, with a Reynolds number based on the plate’s thickness 
equal to lo3. The numerical analysis confirms the finding obtained in our previous experiment that vortex 
shedding from flat plates with square leading and trailing edges is caused by the impinging shear layer 
instability. The Strouhal number based on the plate’s chord increases stepwise with increasing d/h in 
accordance with the experiment. The numerical analysis also gives some crucial information on the 
complicated vortical flow occurring near the trailing edge. Finally, the mechanism of the impinging shear 
layer instability is discussed in the light of the experimental and numerical findings. 
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1. INTRODUCTION 

There have been only a few studies of vortex shedding from elongated bluff cylinders’ in spite of 
its considerable importance in practical applications associated with flow-induced structural 
vibrations. In our previous experiment’ on vortex shedding from flat plates with square leading 
and trailing edges and chord-to-thickness ratios d/h = 3-16, where d is the chord and h is the 
thickness, at Reynolds numbers of (1-3) x lo3, it was pointed out that vortex shedding from flat 
plates is governed by an impinging shear layer instability. This is a kind of single-layer flow 
instability. In general, it can be caused in some situations where a separated shear layer impinges 
upon a rigid corner. The separated shear layer created at the upstream corner becomes unstable 
to roll-up in discrete vortices in the presence of the downstream corner. The length from 
separation to impingement determines the fundamental scale of vortices and the Strouhal number 
based on the length often takes a value of around 0.6. In accordance with these general features, 
our experiment shows that the Strouhal number St(d) based on the plate’s chord d was roughly 
constant and equal to 0.6 for d/h= 3-5. With further increase in d/h up to 15, it increased stepwise 
and the values for each step were roughly equal to integral multiples of 0-6. Although our 
experimental findings have shed new light on the nature of vortex shedding from flat plates, some 
problems remain to be understood more clearly and extensively. The purpose of the present study 
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is to observe the time development of the vortex shedding in detail by using a direct finite 
difference computation and to discuss the mechanism of the stepwise variation in St(d) .  We have 
analysed unsteady viscous flows around flat plates with d/h = 3-9 at a Reynolds number of lo3. 
The incompressible two-dimensional unsteady Navier-Stokes equations were solved in a general- 
ized co-ordinate system using a third-order upwind scheme for the convection term. The 
computed results have been compared with those of our previous experiment. 

2. FORMULATION 

To normalize dimensional values, the time 6 the velocity i and the pressure fl, we assumed 

t = FU/h, P = fl/PU2, v = i/u, 
where U is the upstream velocity, p is the density and h is the height of a flat plate. Thus the 
two-dimensional governing equations for the incompressible viscous flow can be written in the 
dimensionless form 

Dv/dF= - gradp + ( 1/Re)V2v, (1) 

div v = 0, (2) 
with the Reynolds number defined as Re= Uh/v,  where v is the kinematic viscosity. 

Figure 1 shows a typical boundary-fitted grid used in the present computation. By solving 
a Poisson equation in terms of grid points, we controlled these grids to have grid points 
concentrated near the body ~ u r f a c e . ~  A co-ordinate transformation is introduced in order to 
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A 

+d+ 
Figure 1. Typical grid system (for a flat plate with d / h = 8 ,  435 x 81 grid points) and co-ordinate system 
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distribute a sufficient number of grid points in the boundary layer and the wake as follows: 

x = x(5 ,  ?I, ( 34  

Y = Y (& 4 9  (3b) 
where ( x ,  y )  denotes the original physical domain and (5,  q) denotes the computational domain. 
The space derivatives in (3) are written as 

where J = x c y s - x , y l .  Both the velocity and pressure are defined at identical points of the mesh 
system. 

The boundary condition used is as follows: the flow velocity v=(O, 0) on the body surface; 
v = (1,O) on the outer boundary; the pressure p is extrapolated by substitution of v =(O, 0) into 
equation (1) on the body surface; p is linearly extrapolated on the outer boundary. The initial 
condition is taken all over the computational domain as follows: v =(O, 0); p = 0. 

The governing equations of motion (1) and (2) are solved with a procedure based on the 
marker-and-cell (MAC) m e t h ~ d . ~  Taking the divergence of equation (1) leads to a Poisson 
equation for the pressure: 

( 5 )  V2p= -div(v-V)v+(1/Re)V2(div v)- a(div v) /at .  

The space derivatives are approximated with central differences. The time derivative is approx- 
imated with a forward difference: 

Vzp"+ ' = - div [(v" * V)vn] + ( 1/Re)V2D" + D"/At, (6) 
where D=div v, At is the time increment and n is the time step. Although the third term on the 
right-hand side of equation (5) is zero analytically, it is left in equation (6) to preclude the 
accumulation of numerical errors owing to the self-adjustment of this corrective term. The Euler 
implicit scheme is used for the time integration of the equations of motion (1): 

(v"' - v")/At  + ( ~ " . V ) V " + ~  = -gradp"+' + ( 1/Re)V2v"+'. (7) 
Note that the convection terms are linearized as follows: (v*V)vx(v"*V)v"+'. All the space 
derivatives except the convection terms are approximated with central differences. The convec- 
tion terms are approximated with a third-order upwind scheme5 whose leading error is estimated 
to be ( A ~ ) ~ ( f l a ~ u / a x ~ ,  where Ax is a grid size andfis an arbitrary function. We solved the finite 
difference equations (6) and (7) by the successive over relaxation (SOR) iterative method. The 
Reynolds number Re is assumed to be lo3 and the time increment At is (1-2) x for any case. 

For the flat plate with a long chord it is necessary to put a large number of grid lines in the 
5-direction to keep the grid resolution. The outer boundary is about 20 h-50 h upstream and 
50 h-110 h downstream from the centre of a flat plate and about 25 h-50 h away in the vertical 
direction. In the following calculations, various grid sizes are employed for different flat plates. 
Table I shows the total number of grid points for each plate. We made some preliminary 
calculations by using different grid systems to investigate the influence of the grid systems on the 
flow itself, changing the total number of grid points and degree of concentration. Then it was 
confirmed that the adopted grid systems are valid to investigate vortical structures in the vicinity 
of flat plates. All the numerical calculations in this work were carried out on the computer 
systems FACOM-780/20 and FACOM VP-200 at Kyushu University. The typical CPU time 
required increased with increasing d/h, e.g. 2 h approximately for a plate with d/h  = 3 and 24 h for 
dlh = 9. 
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Table I. Grid sizes: i, (-direction; j ,  q-direction 

dlh 3 4 5 6 7 8 9 

1 209 261 313 365 417 453 505 
j 81 81 81 81 81 81 81 

3. RESULTS AND DISCUSSION 

3.1. Flow patterns and time histories of l f t  

Figures 2 and 3(a) show time histories of the lift coefficient CL and flow patterns around the flat 
plates for d/h=3, 6 and 9. Figure 3(a) shows that all the flow patterns look like the regular 
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Figure 2. Time histories of lift coefficient CL for flat plates: (A) d/h = 3; (B) d/h = 6; (C) d/h  = 9 
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Figure 3(a). Distribution of vorticity around flat plates: (A) d/h = 3; (B) d/h = 6; (C) d/h = 9 

L-vortex 

(5) & T-vortex 

Figure 3(b). Time development of vorticity contours for a flat plate with d/h = 6 (1)-(4) vorticity contours; (5) descriptive 
sketch 
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vortex street. The sinusoidal variations of CL in Figure 2 confirm this regular vortex 
. The computed values of St(d) based on the plate’s chord for d/h=3, 6 and 9 are 0.52, 
1.63 respectively. Note that the ratio of the values is roughly 1:2:3. 

Figure 3(b) shows the time development of the vortex shedding for d/h=6. The shear layer 
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Figure 4. Time histories of lift coefficient CL for flat plates: (A) d/h =4; (B) d/h = 5; (C) d /h  = 7; (D) d/h = 8 
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separating from the leading edge reattaches to a side face and forms a separation bubble. The 
bubble oscillates in length at the same frequency as the vortex-shedding frequency. The bubble 
increases steadily in length until the bounding shear layer deflects towards the surface and 
reattaches half-way along the bubble. The bubble is split into two parts: the upstream one 
beginning to grow again and the downstream one convecting along a side face as a discrete 
vortex. The latter is called the L-vortex for brevity. Before the L-vortex reaches the trailing edge, 
the reattached boundary layer separates again at the trailing edge to form another vortex, which 
is called the ‘T-vortex for brevity. The T-vortex interacts regularly with the oncoming L-vortex 
and they are shed in a pair into the downstream wake. The interaction occurs alternately at both 
upper and lower trailing edge corners. Thus a regular vortex street develops in the downstream 
wake, thereby producing the regular variations of CL shown in Figure 2. 

Figure 4 shows time variations of CL and Figure 5(a) shows flow patterns for d/h =4,5,7 and 8. 
In contrast to d/h = 3,6 and 9, the vortex shedding for d/h = 4,5,7 and 8 is irregular in accordance 
with the irregular fluctuations of CL presented in Figure 4; although a time variation for d/h = 4, 
exceptionally, seems closely sinusoidal, the time-averaged value is apparently shifting. 

Figure 5(b) shows the time development of the vortex shedding for d/h  = 8. In a different way 
from Figure 3(b), imperfect pairing of L- and T-vortices can be seen at a trailing edge, where 
L- and T-vortices are shed separately from the trailing edge. The source of the irregularity in C L  

Figure 5(a). Vorticity contours around flat plates: (A) d/h =4; (B) d/h = 5; (C) d/h = 7; (D) d/h = 8 
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Figure yb). Time development of vorticity contours for a Rat plate with d / h = 8  

can be attributed to the timing of shedding of the L- and T-vortices at the upper and lower 
trailing edge corners. 

It should be noted that in the process of vortex shedding, only one vortex is formed on a side 
face for a sequence of d / h  = 3-5 as shown in Figures 3 and 5. Similarly, two vortices are formed for 
a sequence of d/h=6-8  and three vortices for d / h = 9 .  Thus the numbers of vortices formed on 
a side face coincide with the ratio of the computed Strouhal numbers St(d) ,  i.e. 1:2:3. 

Despite this common feature for each sequence, there are apparent differences in both the time 
variations of CL and the flow patterns. If we observe a specific sequence of flow patterns, e.g. 
d/h  = 6 8 ,  we can find differences among them. The flow for the smallest d/h,  i.e. d / h  = 6, is thought 
to be, so to speak, the basic flow in the sequence, because the flow shows a regular interaction 
between the vortex shed from upstream and the vortex formed on the back face. However, as d / h  
increases, this kind of regular interaction breaks down and a complicated interaction emerges. It 
is likely that the interaction controls the downstream vortical structure and gives rise to the 
irregularities. 

3.2. Strouhal number 

The computed Strouhal number S t ( d )  based on the plate’s chord against d/h  is presented in 
Figure 6, which includes the results of our previous experiment.2 The computed Strouhal number 
increases stepwise with d / h  and its values are roughly equal to integral multiples of 0.6 in a similar 
way to those of the experiment. Figures 3(a) and 5(a) show that the number of vortices formed on 
a side face increases in correspondence with the stepwise increase in the Strouhal number. The 
ratio of the Strouhal numbers coincides with the number of vortices formed on a side face. Thus 
the numerical analysis confirms that the vortex shedding from flat plates is characterized by the 
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Figure 6. Strouhal number St(d) based on the chord versus chord-to-thickness ratio d/h at Re= lo3: 0, experimental 
(taken from Reference 2); x , numerical 
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Figure 7. Time history of lift coefficient CL for a transitional d/h = 8 

impinging shear layer instability. Flat plates with d / h  = 3-5 can be classified into the first mode, 
similarly those with d/h=6-8 are classified into the second mode, and so on. 

Returning to Figure 6, it is seen that the computed Strouhal number takes multiple values at 
d / h  = 8 in a similar manner to the experiment. Figure 7 shows a part of the time history of the lift 
coefficient for d / h = 8 .  In an earlier stage, there are irregular fluctuations. However, as time 
proceeds, a regular sinusoidal variation appears spontaneously. The flow pattern (a) in 
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Figure 8. Streaklines for a trqnsitional d /h=8:  (a) the lower St(d)=  1.2, second mode;(b) the higher St(d)=  1.8, third mode 

Figure 8 corresponds to the irregular stage and the flow pattern (b) to the regular stage. What is 
interesting is that the pattern (a) has two vortices on a side face but the pattern (b) has three 
vortices, and the ratio of the Strouhal numbers is roughly 2:3. In other words, the multiple values 
at d / h = 8  indicate a transition from the second mode to the third mode. 

We observed these two kinds of modes also in a laboratory experiment. Flow visualization 
using liquid paraffin smoke was conducted in a wind tunnel with a rectangular working section 
2 m high, 4 m wide and 6 m long. A flat plate with d/h  = 8 was mounted at zero incidence across 
the centre of the working section. The flow velocity was 1 m s- to obtain the same Reynolds 
number as in the computation, i.e. Re= lo3. Figures 9(a) and 9(b) show instantaneous side views 
of the flow around the plate. As shown in Figure 9(a), two vortices are present on a side face. On 
the other hand, Figure 9(b) shows three vortices on a side face. The ratio of the Strouhal number is 
roughly 2:3. These results are in good agreement with the numerical results. 

3.3. Impinging shear layer instability 

According to Rockwell and Naudascher,6 the shear layer instability is greatly enhanced by the 
feedback control of the impinging edge on the vorticity production at the separation point. We 
also think that the trailing edge of the flat plates plays an essential role of enhancing the shear 
layer instability. 

The impinging shear layer instability starts at about d/h = 3 where the wavelength of vortex 
shedding is nearly equal to the plate’s chord. As d/h  is increased, the wavelength is locked on to 
the plate’s chord through some non-linear flow processes until a certain limit is reached. At the 
limit, transition of the mode of vortex shedding from n = 1 to n = 2 occurs, as has been reproduced 
for a flat plate with d/h = 8 by using a finite difference computation in the preceding subsection. 
With a further increase in d/h the same cycle of events repeats itself. Thus the stepwise variation of 
the Strouhal number appears for the flow around the flat plates. 
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Figure 9. Visualization of the flow around a flat plate with d / h = 8  at Re= lo3: (a)side view, second mode, S t ( d ) =  1.2, 
(b) side view, third mode, S t ( d ) =  1.8 

4. CONCLUSIONS 

The viscous incompressible flow around flat plates with square leading and trailing edges was 
investigated by using the finite difference computation of the unsteady Navier-Stokes equations 
at Re = lo3. The chord-to-thickness ratio of a flat plate ranged from d / h  = 3 to 9. The results are as 
follows. 

The vortex shedding from flat plates with d / h  = 3-9 is governed by the impinging shear layer 
instability. This is because the computed Strouhal number increases stepwise with d / h  and the 
values are roughly equal to integral multiples of 0 6  in a similar way to that of the experiment. The 
ratio of the Strouhal numbers is 1 : 2 : 3  in accordance with the number of vortices formed on a side 
face. 
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If we observe a sequence of flow patterns of a specific mode, some differences can be seen 
among them. The flow for the smallest dlh is, so to speak, the basic flow which shows a regular 
interaction between the vortex shed from the upstream corner and the vortex formed on the back 
face. As d/h increases, this kind of regular interaction breaks down, with irregularities in vortex 
shedding emerging. With further increase in d/h the flow jumps to that of a higher mode. There is 
a complicated interaction between the vortex shed from upstream and that formed on the back 
face which controls the downstream vortical flow. The source of the irregularities in the flow may 
be attributed to the interaction. 
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